skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ozdemir, Ridvan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we examine the topological phases of the spring-mass lattices when the spatial inversion symmetry of the system is broken and prove the existence of edge modes when two lattices with different topological phases are glued together. In particular, for the one-dimensional lattice consisting of an infinite array of masses connected by springs, we show that the Zak phase of the lattice is quantized, only taking the value 0 or π . We also prove the existence of an edge mode when two semi-infinite lattices with distinct Zak phases are connected. For the two-dimensional honeycomb lattice, we characterize the valley Chern numbers of the lattice when the masses on the lattice vertices are uneven. The existence of edge modes is proved for a joint honeycomb lattice formed by gluing two semi-infinite lattices with opposite valley Chern numbers together. 
    more » « less